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Abstract

An ensemble based Sea Ice Seasonal Prediction System (SISPS) is configured towards operationally predicting
the Arctic summer sea ice conditions. SISPS runs as a pan-Arctic sea ice-ocean coupled model based on
Massachusetts Institute of Technology general circulation model (MITgem). A 4-month hindcast is carried out
by SISPS starting from May 25, 2016. The sea ice-ocean initial fields for each ensemble member are from
corresponding restart files from an ensemble data assimilation system that assimilates near-real-time Special
Sensor Microwave Imager Sounder (SSMIS) sea ice concentration, Soil Moisture and Ocean Salinity (SMOS)
and CryoSat-2 ice thickness. An ensemble of 11 time lagged operational atmospheric forcing from the

National Center for Environmental Prediction (NCEP) climate forecast system model version 2 (CFSv2) is

used to drive the ice-ocean model. Comparing with the satellite based sea ice observations and reanalysis data,
the SISPS prediction shows good agreement in the evolution of sea ice extent and thickness, and performs
much better than the CFSv2 operational sea ice prediction. This can be largely attributed to the initial

conditions that we used in assimilating the SMOS and CryoSat-2 sea ice thickness data, thereafter reduces the
initial model bias in the basin wide sea ice thickness, while in CFSv2 there is no sea ice thickness assimilation.
Furthermore, comparisons with sea ice predictions driven by deterministic forcings demonstrate the

importance of employing an ensemble approach to capture the large prediction uncertainty in Arctic summer.
The sensitivity experiments also show that the sea ice thickness initialization that has a long-term memory
plays a more important role than sea ice concentration and sea ice extent initialization on seasonal sea ice
prediction. This study shows a good potential to implement Arctic sea ice seasonal prediction using the current
configuration of ensemble system.
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1. Introduction

Arctic sea ice is under dramatic shrinking and thinning (e.g., Cavalieri and Parkinson, 2012; Kwok and
Cunningham, 2015). The opening of commercial shipping routes in the Arctic Ocean significantly reduces the
shipping distance from Asia to Europe. The reliable sea ice prediction from daily to seasonal scale is thus
strongly required by the increasing shipping activities in the Arctic (Jung et al., 2016). Not only is the real-time
prediction on the synoptic scale strongly needed during shipping in the Arctic, the seasonal sea ice outlook is
also required for better decisions on the shipping time window before the coming summer.

Since 2008, the international communities have made great efforts to predict the Arctic summer sea ice
minimum from late May or early June (Sea Ice Outlook (SI0), http://www.arcus.org/sipn/sea-ice-outlook;
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Stroeve et al., 2014). The employed approachesdadtatistical models, sea ice-ocean models {ag-,
Arctic Ice Ocean Modeling and Assimilation SystdPiMAS), Zhang et al., 2008) and fully coupled
atmosphere-sea ice-ocean models (e.g., the Nat@ardakrs for Environmental Prediction (NCEP) clienat
forecast system version 2 (CFSv2), Saha et al4)2@Ully coupled models allow a strong interacti@iween
the atmosphere, sea ice and ocean and are moréexofidpuker et al., 2015), while sea ice-ocean nwdee
forced by prescribed atmospheric fields and areetsimplement. Nevertheless, the 10-year intional
joint efforts using these approaches from Sea tedi€tion Network (SIPN) show that the seasonalidsea
ice prediction remains challenging with large uteieties.

Numerical predictions depend heavily on the ingiah ice model states. Systematic use of sea sgg\altions
in an advanced data assimilation system is crémidhe sea ice prediction (Yang et al., 2014, 30T6e sea
ice thickness initialization has been shown torbpartant for seasonal Arctic sea ice predictiog.(e.
Blanchard-Wrigglesworth et al., 2011; Chevallied 8alas-Melia, 2012; Day et al., 2014; Massonnat. gt
2014). In recent years, basin-scale sea ice théskdata from satellites have become available,teagSoil
Moisture and Ocean Salinity (SMOS) sea ice thickrf@gan-Kunze et al., 2014) and the CryoSat-2 sea i
thickness (Ricker et al., 2014). However, very ledistudies examined the potential influence afakaing
SMOS and/or CryoSat-2 ice thickness on the seaseaake prediction to date (e.g., Kauker et 8152
Chen et al., 2017; Blockley et al., 2018).

Based on ensemble based Kalman filter and Massaitbulisstitute of Technology general circulationdab
(MITgcm) ice-ocean coupled model, an advancedaedata assimilation and prediction system has been
developed, and skillful sea ice predictions ingkiroptic scale were obtained by assimilating Sp&aasor
Microwave Imager Sounder (SSMIS) sea ice conceotraind SMOS/CryoSat-2 ice thickness (e.g., Yang et
al., 2014; Yang et al., 2015a; Yang et al., 20M3ng et al., 2016a; Yang et al., 2016b; Mu et2d18a; Mu

et al., 2018b). However, it is not clear whethés #ystem can be extended to the operational salason
prediction.

Towards a skillful operational Arctic sea ice seadmutlook, in this study, we construct an ensentlalsed
sea ice assimilation and prediction system for samiwctic sea ice prediction. To better captureléinge
uncertainties in late summer, we have conducted afensemble predictions of Arctic sea ice in is1Em
2016 using a coupled ice-ocean model. The summ2016 is chosen because that year had a record low
maximum extent in March, a record low monthly exienJune, and the second lowest monthly extent in
September (4.14 million square kilometers; httgitin.org/arcticseaicenews/2016/09/) since thelgateta.
The 4-month sea ice concentration and thicknestighiens which started from May 25 of 2016 are aa#td
with satellite, reanalysis and-situ observations. A detailed description of the prialicsystem is presented
in Section 2, followed by experiment design in #8t8. The prediction evaluation and results amshin
Section 4. The sensitivity of the prediction sysiershown in Section 5, and finally the discussiod
conclusions are provided in Section 6.

2. Ensemble Based Sea | ce Seasonal Prediction System

The ensemble based Sea Ice Seasonal Predictie@nB¢SISPS) uses the MITgem sea ice-ocean model
(Marshall et al., 1997, Losch et al., 2010). Thisdel includes state-of-the-art sea ice dynamicedas
Zhang and Hibler (1997) and simple zero-layer tletynamics (Losch et al., 2010). An Arctic regional
configuration with a horizontal resolution of abdi® km (Losch et al., 2010; Nguyen et al., 201 Bpiplied.
The vertical resolution is higher in the upper agerth 28 vertical levels in the top 1000 m anditidnal 22
layers below 1000 m. Bathymetry is derived from i National Geophysical Data Center (NGDC) 2 min
global relief dataset (ETOPO2: Smith and Sandw8&B7). The monthly mean river runoff is based @n th
Arctic Runoff Data Base (ARDB). Climatological oceafields from the Estimating the Circulation and
Climate of the Ocean, Phase Il (ECCO2) are presdribr the open boundary conditions.

To provide the “best possible” initial ice-oceamdiions for SISPS prediction, a retrospective $ation
(CMST; Mu et al., 2018b) that assimilates satefiita ice concentration and ice thickness was daotie The
CMST simulation is available during the SMOS angld3at-2 period from October 2010, and has been



106 evaluated to be a good estimate on both wintersantner Arctic sea ice thickness (Mu et al., 2018B)in
107 Yangetal. (2015a, 2016) and Mu et al.(2018a3, siinulation was also driven by the United Kingdidiet
108 Office (UKMO) ensemble atmospheric forcing with @3turbed members from 1 January 2010 to 15 July
109 2014, and 11 perturbed members after 6 Novembet @Bile assimilating near-real-time SSMIS sea ice
110 concentration, SMOS and CryoSat-2 sea ice thickdass The SSMIS sea ice concentration is avaikble
111 year round, but the SMOS/CryoSat-2 ice thicknessig available for the cold season from Octobehto
112 next April. It should be noted that there is noraeal-time SMOS and CryoSat-2 ice thickness dadlable
113 on May 26, 2016, the starting date of this seasraliction. However, the sea ice thickness asatadlin the
114  cold season can provide a good initial state femtielt season when thickness data are not avaikadethe
115 summer ice thickness can be corrected via theip@sitoss-correlations between ice concentratiah an
116 thickness (Yang et al., 2015a; Mu et al., 2018b).

117

118 The atmospheric forcing fields for the seasondboltare obtained from the CFSv2. The daily CFSv2
119 prediction ranges from hours to months (Saha g2@l4). The forecast runs go out to 9 months eslayy
120 and these data are used for seasonal predictitwsistudy. The CFSv2 provide 6-hourly atmospheric
121 forecasting fields in real time. These fields aai for forcing ice-ocean models on daily to seaktime
122  scales. To match our ensemble data assimilatiofigemation with the CMST simulation (11 members in
123 2016), here we use 11 CFSv2 forecast ensemble mgmidgch include 1 forecast on the prediction (fy
124  May 2016) and 10 forecasts from the previous ddyergcasts from 24 May, 4 forecasts from 23 May, 2
125 forecasts from 22 May of 2016). A 48h-lagged fostésone with valid time 48h in advance of theibeing
126 of the seasonal forecast period, so Oh-lagged liteThindicates the forecast that starts on 00:69 B6 2016.
127  Allthese predictions range from 00:00 25 May tc000L October of 2016. After the initialization, 11

128 ensemble sea ice-ocean forecasts are conductegaisiospheric forecasts from 11 CFSv2 ensemble runs
129 e.g., each of these 11 individual ensemble menibassociated with a unique set of forcing fieldd aea
130 ice-ocean initial states from 25 May 2016 to 30tS&eyber 2016. During the seasonal prediction, SI&RS
131 these initialization fields from the CMST simulatjcand runs forward without assimilating any sitelte
132 concentration and thickness data.

133

134 3. Validation and Sensitivity Experiment Design

136 As areference, the operational seasonal CFSvizegaediction started from 00:00 25 May in 2016ls0
137  evaluated and compared with our results. The semaxlel used in CFSv2 is based on the Geophydigal F
138 Dynamics Laboratory (GFDL) Sea Ice Simulator. Diéfet from SISPS, it has three layers for

139 thermodynamics, and uses the elastic—viscous-plastinique (EVP; Hunke and Dukowicz, 1997) forisea
140 dynamics. The initial condition for sea ice in BESV2 hindcast is from the NCEP Climate Forecaste®y
141 Reanalysis (CFSR) that assimilates the near-ne&-8SMIS sea ice concentration from the National\Sn
142 and Ice Data Center (NSIDC; Cavalieri et al., 1986p://nsidc.org/data/nsidc-0081) with a simpleging
143 scheme. Note that although CFSR has a modeletiadeess, there is no sea ice thickness assinilafior
144  details, the readers are referred to Saha etGl0j2

145

146 The sea ice concentration from NSIDC, the PIOMAGthickness reanalysis, the CMST ice thicknesslzad
147 in-situ ice thickness from the Beaufort Gyre Expt@mn Project (BGEP; http://www.whoi.edu/beauforay
148 are used for evaluation. The PIOMAS system conefdtise Parallel Ocean Program (POP) and a 12-categ
149 thickness and enthalpy distribution sea ice model generalized curvilinear coordinate. This system i
150 forced by NCEP/NCAR reanalysis. Daily sea ice cotregion from NSIDC and sea surface temperatuna fro
151 the NCEP/NCAR reanalysis are assimilated with nogigind optimal interpolation (Zhang and Rothrock,
152 20083; Schweiger et al., 2011). The BGEP deploysang looking sonar (ULS) moorings at three location
153 BGEP A, BGEP B and BGEP D every year since 2008 thha ULS can measure the ice draft with an erfor o
154  about 0.1m (Melling et al., 1995). Following Nguyetmal. (2011), drafts are converted to thicknebyes

155  simply multiplying with a factor of 1.1. The locatis of ULS sites were listed in Figure 1 of Yangle(2015).
156

157 To study the sensitivity of the SISPS predictiomlifferent sea ice initializations and atmosphésicing, four
158 more experiments are conducted in addition to tmerol run (SISPS as described in Section 2) aw/slio
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Table 1. The deterministic prediction experimentOMST is driven by Oh-lagged CFSv2 forcing, whish i
right on the prediction start date and is expetidak the most realistic because of the bettanirstate after
initialization in the CFSv2. The sea ice stateBmMCMST are initialized by the CMST ensemble mdre
experiment ENS-PIOMAS is configured as SISPS, BasuPIOMAS thickness to initialize the model
thickness. The experiment DP-PIOMAS, however, ésdbterministic prediction for ENS-PIOMAS. Sea ice
thickness from the CFSv2 is also used to initialimemodel thickness in an experiment named DP-CTRS.
differences between DP-CFS and CFSv2 are that DP+GEs a different model with different initial sea
concentration.

Table 1 Summary of the experiment configuration.

Seaiceinitial condition Atmospheric forcing ?I?;ap?:ingtiil?ni%r;r?\ég
SISPS CMST SIC / CMST SIT Time"aggigrgﬁg"z ensemt No
DP-CMST CMST SIC / CMST SI Oh-lagged CFSv2 forcir No
ENS-PIOMAS | CMST SIC / PIOMAS SIT Time"aggigrgﬁgvz ensemt No
DP-PIOMAS | CMST SIC / PIOMAS ST | Ohlagged CFSV2 forcir No
DP-CFS CMST SIC / CFSv2 S Oh-lagged CFSv2 forcir No

*S|C = Sea ice concentration, SIT = Sea ice thiskne

4. SISPS Prediction Results

4.1 Seaice extent and concentration

The sea ice extent is defined as the total aréaeafrids with ice concentration larger than 15%e T
prediction is good for the date of the summer mummaround September 10 (Figure 1) from CFSv2 and
SISPS. The SISPS summer extent minimum is 4.26omiin?, which is slightly larger than the NSIDC
observation (4.14 million kA However, a large overestimation of 3.83 milllan? (a relative overestimation
of 92.3%) is observed in the CFSv2 predictionhtitdd also be noted that SISPS significantly ursterates
the ice extent in July. The underestimation isahear at this moment. It may be related to thensyor
conditions in July and August of 2016 (http://nstatg/arcticseaicenews/2016/09/), which, howeveangigond

the capability for CFSv2 to predict realistic sytiopveather 2 months ahead.
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Figure 1 Evolution of Arctic sea ice extent from 25 May30 September in 2016. The NSIDC observations
and CFSv2 forecasts are shown as black and blictlis@s, respectively. The ensemble mean andptead
of SISPS forecasts are shown as red dashed lide®drshades. Date format is dd/mm.

Figure 2 shows the sea ice extent prediction imgfgrent Arctic regions, as defined on FigurenXJavalieri
and Parkinson (2012). The CFSv2 overestimateseaaxient in most of the Arctic regions, in patiéecihere
is an overestimation of 3.5 million Kr0.6 million knfand 0.3 million kmin the Central Arctic Ocean, the
Kara and Barents Seas and the Canadian Archipeta@eptember 10 of 2016 (the Arctic summer minimum)
respectively. Thesecan also be seen in Figurew8hich it shows the sea ice concentration averaged the
period from 30 August to 19 September, 2016. Irtresh, the ensemble mean of SISPS agrees welkhth
NSIDC observations in most of the regions, paréidylin the central Arctic Ocean (Figure 2) and in
September. However, the predicted ice extent iralead Barents Seas are highly overestimated inahuhe
July, and the maximum overestimation reaches Olfomkm? Sea ice in Kara and Barents Seas was well
below average in winter and spring of 2016, andstivéace conditions were unusually warm, therese@ice
extent in June and July of 2016 were significaltlyer than the normal level
(http://nsidc.org/arcticseaicenews/2016/07/). ia #ituation, SISPS fails to capture the abnorraalise
changes due to imperfect atmospheric conditions fie prediction.
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Figure 2 Evolutions of sea ice extent in different Arctégions from 25 May to 30 September in 2016. The

NSIDC observations, CFSv2 and ensemble mean ofSl&@®casts are shown as black, blue and red solid
lines, respectively.
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Figure 3 Sea ice concentration averaged over the period 8@ August to 19 September, 2016. Note that
results from SISPS, CMST and ENS-PIOMAS are ensemiglans. Both CMST and PIOMAS assimilate sea
ice concentration over this period and, moreowves, surface temperature is also assimilated in PIOM?¥P
indicates experiments with single deterministiciiog, and ENS indicates the experiment with ensembl
CFSv2 forcing.

The temporal evolution of root-mean-square errdd @) differences between the predictions with the
NSIDC sea ice concentration observations are showigure 4. Following Lisaeter et al. (2003) anchyat
al. (2015), the RMSE is only calculated at gridnp®iwhere either the forecasts or the observatians ice
concentration larger than 0.05. The RMSE of theegnide mean SISPS prediction (the blue solid lin€).34
in the beginning of the prediction, and is basjcathble within a range between 0.28 and 0.34 theed-
month prediction period. The CFSv2 has even lowdBE values than the SISPS ensemble mean in the firs
25 days (before June 19; the blue dashed linehwdtiows some prediction skill on the sea ice aanagon
during this period. This is expected because th8v2KEystem operationally nudges the NSIDC sea ice
observations which are also used in this validatitowever, in contrast to SISPS, the RMSE of CFSv2
prediction keeps increasing and reaches a maxinfuld® on 8 September of 2016, which also demoiestra
a large error in the seasonal summer sea ice fiedin the operational CFSv2 system.
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224
225  Figure4 Evolution of RMSE differences (blue) and the imttgd ice-edge error (IIEE; red) with respect to
226 the NSIDC ice concentration data from 25 May tcS@ptember in 2016, the SISPS ensemble mean and the
227 CFSv2 predicted sea ice concentration are showgnl@sand dashed lines, respectively.
228
229 Here the integrated ice-edge error (IIEE; Goessding., 2016) is used as an additional metrishéiws the
230 total area of grid cells, where there is a mismaetwveen the model and satellite data in the poesehsea
231 ice. The IIEE of SISPS (the red solid line in Figd) is always significantly lower than that of G2Sthe red
232 dashed line) during the 4-month prediction periite mean IIEE during this period for SISPS is 2riflion
233 km? while that for CFSv2 is 4.19 million KmThe difference is substantial with about 2.14iorilkm? that is
234  more than half of the CFSv2 IIEE values.
235
236 The predicted sea ice concentration varies coraditieamong the 11 ensemble members, in particalar i
237  September (Figure 5). The ensemble standard daviafisea ice concentration is very small in thgitmging
238 of the prediction, but it keeps increasing with pinediction time, and finally reaches a maximuntaie
239 September. The predicted deviation (prediction tao#ies) is relatively small in the central Activhere the
240 seaice concentration is close to 100%, and largleei marginal ice zones where sea ice changesaticatly
241 (Figure 5). This spatial distribution and ensendgeead fit well to the standard deviation of sea ic
242  concentration calculated based on SSMIS obsengtiver the period from 2006 to 2016 (also 11 mesjber
243 figure not shown). It demonstrates that the ensersflead of SSMIS is able to mimic the interannual
244 variability in reality.
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Figure5 The ensemble standard deviation (SD) of sea ineeartration for SISPS on 1 June, 1 July, 1 August,
1 September, 10 September, and 30 September, 2016.

4.2 Seaicethickness

SISPS sea ice thickness prediction averaged oggrdhiod from 30 August to 19 September 2016 isvaha
Figure 6. The SISPS prediction agrees well with G\&d PIOMAS thickness (Figure 6). Sea ice thicknes
in the East Siberian and Laptev Seas is underdstihiy SISPS, while appears promising over thiek(c

1.0 m) area. SISPS also predicts more ice alortgceast of Greenland. Apparently, CFSv2 highly
overestimates sea ice thickness in the centralfBgddea and the Arctic marginal seas (Figure B 3patial
distribution of CFSv2 thickness seems not reasenatinparing to the well-recognized PIOMAS reanalysi
Similar to the ice concentration prediction, th&B% shows better prediction skill over the CFSeijgtion.
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Figure 6 Sea ice thicknesses averaged over the period3tbAugust to 19 September, 2016. Note that
results from SISPS, CMST and ENS-PIOMAS are ensemiglans. Both CMST and PIOMAS assimilate sea
ice concentration over this period and, moreowves, sirface temperature is also assimilated in PISM?P
indicates experiments with single deterministiciiog, and ENS indicates the experiment with ensembl
CFSv2 forcing.

The time series of sea ice thickness predictioescampared tan-situ ULS-observations BGEP_2015A
(Figure 7a), BGEP_2015B (Figure 7b) and BGEP_201bigure 7c). At the site BGEP_2015A, the ice
thickness RMSE of CFSv2, SISPS, CMST and PIOMA® waispect to the observations are 2.49 m, 0.40 m,
0.39 m and 0.39 m, respectively; at the site BGBER5B, they are 3.17 m, 0.31m, 0.33 m and 0.27 m,
respectively; at the site BGEP_2015D, they are 138.53 m, 0.50 m and 0.51 m, respectively. plgisible
that the 4-month sea ice thickness prediction &PS agrees well with the-situ observations, and is



272  comparable with the PIOMAS and CMST ice thicknestineates. CFSv2 overestimates sea ice thickness in
273 the Beaufort Sea by as much as up to 2 m as atsensin Figure 6.
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276  Figure7 Evolution of mean sea ice thickness (m) at (a) BGFD15A, (b) BGEP_2015B and (c)

277 BGEP_2015D Beaufort Sea from 25 May to 30 Septer2d#6. The BGEP, PIOMAS, CMST, and CFSv2
278 thickness are shown as black, green, blue, magentaed solid lines, respectively. The ensemblennaeal
279  the spread of SISPS forecasts are shown as reddifisbs and red shades.

280

281

282  Similar to the ice concentration prediction, theemble spread of the predicted sea ice thickneesvaties
283 considerably among the 11 ensemble members withdiolution (Figure 8), but shows differences ostisp
284  distribution. In early summer (e.g., 1 July) the@mble deviation of sea ice thickness is small.{snQin the
285 central Arctic Ocean and large (> 0.4 m) in thegiral sea ice zone (Figure 8), which is consistétit the
286 seaice concentration (Figure 5), Over the melieigod, the deviation becomes larger (> 0.4 mhéendentral
287  Arctic.
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Figure 8 The ensemble standard deviation (SD) of sea ickrtbss for SISPS on 1 June, 1 July, 1 August, 1
September, 10 September, and 30 September in 2016.
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5. Sensditivity of SISPSin seasonal seaice prediction

The uncertainty of sea ice prediction using anocean coupled model may be attributed to shortogsnim
model physics and improper atmospheric forcing. ifft&l condition plays an important role on loteym
prediction in the presence of such uncertainti€SPS sea ice prediction benefits from both theainstates
from the CMST ensemble and the time-lagged ensefolidng from the CFSv2.

As shown in Figures 3 and 6, with reasonable se#hickness initialization, SISPS, DP-CMST, ENS-
PIOMAS and DP-PIOMAS all predicted better Septendazr ice concentration and thickness than the CFSv2
and DP-CFS did. However, even with the same seeoigceentration initialization as DP-CMST and DP-
PIOMAS, sea ice concentration from DP-CFS is faayfvom reality, so is the sea ice thickness. This
indicates that a realistic sea ice thickness ligtition is crucial for seasonal prediction, a®alsported by
other studies (Blockley et al., 2018; Collow ef 2015; Xie et al., 2018). It is worth noting tlzdtthough

CMST and PIOMAS sea ice thickness can be both dermil as good estimates in the Arctic (CMST versus
PIOMAS in Figure 6), the initialization of using G or PIOMAS thickness can still lead great differes

in predicting September sea ice thickness (FigBrasd 6; DP-CMST versus DP-PIOMAS). Sea ice thiskne
and concentration are underestimated north of a®éa. In DP-CMST sea ice concentration and thiekne
are also underestimated north of the East Sib&# but they are overestimated in DP-PIOMAS there.

The initial sea ice extent also plays a substartilalon September sea ice extent prediction, bubn ice
concentration and thickness prediction in our stildyDP-CFS the initial sea ice concentration flGMST is
used, which is closer to the NSIDC observationhasva in Figure 1, therefore the initial sea icecaxtfor
DP-CFS is considered reasonable. The Septembaeseatent prediction from DP-CFS outperforms CFSv2
(Figures 3 and 6) over the Arctic marginal seagv@Hier et al. (2013) also confirmed that the aabynof
spring sea ice cover preconditions the Septemiiea8bmaly. However, a better sea ice concentraiital
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condition alone does not give rise to a promisiagt&mber sea ice concentration (DP-CFS in Figueng)
sea ice thickness (DP-CFS in Figure 6).

The ensemble forcing, another important influendawgor for sea ice prediction, has improved thedjtion
for both ice concentration and ice thickness (SISREENS-PIOMAS in Figures 3 and 6). The ensemble
forcing not only reduces uncertainties in the atphesic forcing but also corrects ice-ocean model
uncertainties due to model deficiencies such derdifit sea ice parameters in different models,(e.qg.
Massonnet et al., 2014). As shown in Figure 90thdagged CFSv2 atmospheric forecast (red line} dog
always have the lowest root-mean-square (RMS)rdifiees with respect to ERA-Interim atmospheric
reanalysis according to the calculation of downwardjwave radiation, downward shortwave radiatind 2
m temperature. The 66h-lagged forecast even pesfbetter, such as the 2 m temperature forecashim dnd
July (Figure 9c¢) and the downward shortwave ragliafibrecast in June (Figure 9b). The ensemblerigrci
provides atmospheric trajectories with also widabability for the prediction. In SISPS thicker andre ice
is predicted over the area near North Pole towtdrgl€urasian continent, but it is underestimatddma
CMST over the same area. ENS-PIOMAS also redueebitises of DP-PIOMAS over this area and north of
East Siberian Sea.

Downward longwave radiation Downward shortwave radiation

2 m temperature

15 (b) 45 (C) 2.6
14 40 2.4
o <
g1 £ 3 22
B B o
= = L
w12 030 w2
! @25 1.8 The forecast ensemble
=#=—The mean forecast
10 20 1.6 =#=— Oh-lagged forecast
=—#=— 66h-lagged forecast
9 15 - 1.4
Jun Jul Aug Sep Jun Jul Aug Sep Jun Jul Aug Sep

Figure 9 RMS differences of monthly mean downward longweadiation (a), downward shortwave radiation
(b), and 2 m temperature (c) in the ensemble fgraiith respect to ERA-Interim atmospheric reanalysiote
that the Oh-lagged forecast was initialized in CE8ght on the prediction start (00:00:00 25 MayL.&))

while the 66h-lagged forecast was initialized 66risdefore the prediction start.

6. Discussion and conclusions

In an effort to operationally predict the summea E® on seasonal time scale, an ensemble basedrfaéa
Sea Ice Prediction System (SISPS) is configuredsadtainonth hindcast experiment is carried out &aljot
the summer sea ice in 2016. The initializationtfa experiment uses the restart files from the Cigdgiem
that assimilates near-real-time satellite sea lisevations, specifically the sea ice concentrdtiam SSMI
and/or SSM/IS channels and the sea ice thickness 8MOS and CryoSat-2. Zhang et al. (2008)
implemented a 1-year sea ice prediction systengusichanging initial sea ice-ocean fields but waith
ensemble of different atmospheric forcing. In gtigdy, we extend the outlook with an ensemble ¢ bo
different sea ice-ocean initialized fields and eliféint atmospheric forcing fields. The relativelggiaensemble
standard deviations in September in SISPS are aanlgato the natural variability calculated fron0BGo
2016. Evaluations with observations demonstrategtetliction results from SISPS are very promisitige
results from the additional sensitivity experimeintdicate that the proper sea ice initial condisiamd
ensemble atmospheric forcing in SISPS contributelietter prediction.

As illustrated in Zhang et al. (2008), one diffiguin the ensemble predictions is the lack of openal
prediction forcing since the ice-ocean model da#sntlude an atmospheric component. Zhang e2@0Dg)
used the NCEP/NCAR reanalysis forcing fields frod®@to 2007 for various individual ensemble predict

to drive PIOMAS sea ice-ocean model, while Zhang) &ohweiger used the daily four atmospheric sedsona
forecasts from the CFSv2 in their seasonal seauteok for 2017. As a further extension, in thisdy we
increase the ensemble members to 11 to match sandate initializations, and to better reflect thediction



361 uncertainties, by using a time-lagged ensemblelafiderational atmospheric forcing which from theSSE
362  system.

363

364  The second difficulty described in Zhang et al.0@0is the lack of reasonable initial ensembleiseacean
365 state. Our initial sea ice-ocean fields are from@MST simulation, in which the near-real-time SS\ka ice
366 concentration, SMOS and CryoSat-2 ice thicknesassnilated, and had been proven to be a goadasti
367 on the year-round Arctic sea ice thickness (Mu.e2@18b). The SISPS predicts a much better sea ic
368 distribution than the CFSv2 does, although the atpmral atmospheric forcing fields from the CFSv2 ased
369 to drive SISPS. This reflects the importance ofnaidating satellite based sea ice concentrationtaiwkness
370 observations with an advanced data assimilatiomadethough there is no available sea ice thickness
371 observations on the prediction starting date (Mawp22016). The multivariate data assimilation egshelps
372  correct the sea ice thickness by providing a gadihi state for the upcoming melt season and upgahe
373  summer thickness with assimilation of sea ice cotraéion only, because there is a positive corimiat

374  Dbetween sea ice concentration and thickness in supwhich can be explained by sea ice thermodyrsamic
375 that the thick ice can reduce the horizontal mglfiang et al., 2015; Mu et al., 2018b). HoweueICFSv2
376 it only assimilates sea ice concentration withnapdé nudging scheme, ice thickness cannot be detec
377  during the assimilation, thus the overestimatiothef Arctic sea ice thickness in CFSv2 remains anghd. It
378 s expected that the sea ice prediction can bellamprrected by reducing the initial sea ice thiess error if
379 the CryoSat-2 and SMOS ice thickness are assidilat€FSv2 (Chen et al., 2017). The systematiagrro
380 should be considered and treated carefully whemgusie CFSv2 for seasonal sea ice predictions.

381

382  Although this is only a case study towards develggin operational sea ice seasonal predictionrayiste
383  predict summer sea ice conditions, this SISPS sykes shown great potential for seasonal sea émtiqbion.
384  Nevertheless, more applications with this systenséasonal sea ice prediction can be applied ifuthee,
385  the robustness of the system can be further tested.
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