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Abstract 20 
An ensemble based Sea Ice Seasonal Prediction System (SISPS) is configured towards operationally predicting 21 
the Arctic summer sea ice conditions. SISPS runs as a pan-Arctic sea ice-ocean coupled model based on 22 
Massachusetts Institute of Technology general circulation model (MITgcm). A 4-month hindcast is carried out 23 
by SISPS starting from May 25, 2016. The sea ice-ocean initial fields for each ensemble member are from 24 
corresponding restart files from an ensemble data assimilation system that assimilates near-real-time Special 25 
Sensor Microwave Imager Sounder (SSMIS) sea ice concentration, Soil Moisture and Ocean Salinity (SMOS) 26 
and CryoSat-2 ice thickness. An ensemble of 11 time lagged operational atmospheric forcing from the 27 
National Center for Environmental Prediction (NCEP) climate forecast system model version 2 (CFSv2) is 28 
used to drive the ice-ocean model. Comparing with the satellite based sea ice observations and reanalysis data, 29 
the SISPS prediction shows good agreement in the evolution of sea ice extent and thickness, and performs 30 
much better than the CFSv2 operational sea ice prediction. This can be largely attributed to the initial 31 
conditions that we used in assimilating the SMOS and CryoSat-2 sea ice thickness data, thereafter reduces the 32 
initial model bias in the basin wide sea ice thickness, while in CFSv2 there is no sea ice thickness assimilation. 33 
Furthermore, comparisons with sea ice predictions driven by deterministic forcings demonstrate the 34 
importance of employing an ensemble approach to capture the large prediction uncertainty in Arctic summer. 35 
The sensitivity experiments also show that the sea ice thickness initialization that has a long-term memory 36 
plays a more important role than sea ice concentration and sea ice extent initialization on seasonal sea ice 37 
prediction. This study shows a good potential to implement Arctic sea ice seasonal prediction using the current 38 
configuration of ensemble system.  39 
  40 
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 42 
1. Introduction 43 
Arctic sea ice is under dramatic shrinking and thinning (e.g., Cavalieri and Parkinson, 2012; Kwok and 44 
Cunningham, 2015). The opening of commercial shipping routes in the Arctic Ocean significantly reduces the 45 
shipping distance from Asia to Europe. The reliable sea ice prediction from daily to seasonal scale is thus 46 
strongly required by the increasing shipping activities in the Arctic (Jung et al., 2016). Not only is the real-time 47 
prediction on the synoptic scale strongly needed during shipping in the Arctic, the seasonal sea ice outlook is 48 
also required for better decisions on the shipping time window before the coming summer.  49 
 50 
Since 2008, the international communities have made great efforts to predict the Arctic summer sea ice 51 
minimum from late May or early June (Sea Ice Outlook (SIO), http://www.arcus.org/sipn/sea-ice-outlook; 52 
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Stroeve et al., 2014). The employed approaches include statistical models, sea ice-ocean models (e.g., Pan-53 
Arctic Ice Ocean Modeling and Assimilation System (PIOMAS), Zhang et al., 2008) and fully coupled 54 
atmosphere-sea ice-ocean models (e.g., the National Centers for Environmental Prediction (NCEP) climate 55 
forecast system version 2 (CFSv2), Saha et al., 2014). Fully coupled models allow a strong interaction between 56 
the atmosphere, sea ice and ocean and are more complex (Kauker et al., 2015), while sea ice-ocean models are 57 
forced by prescribed atmospheric fields and are easier to implement. Nevertheless, the 10-year international 58 
joint efforts using these approaches from Sea Ice Prediction Network (SIPN) show that the seasonal Arctic sea 59 
ice prediction remains challenging with large uncertainties. 60 
 61 
Numerical predictions depend heavily on the initial sea ice model states. Systematic use of sea ice observations 62 
in an advanced data assimilation system is crucial for the sea ice prediction (Yang et al., 2014, 2015). The sea 63 
ice thickness initialization has been shown to be important for seasonal Arctic sea ice prediction (e.g., 64 
Blanchard-Wrigglesworth et al., 2011; Chevallier and Salas-Melia, 2012; Day et al., 2014; Massonnet et al., 65 
2014). In recent years, basin-scale sea ice thickness data from satellites have become available, e.g., the Soil 66 
Moisture and Ocean Salinity (SMOS) sea ice thickness (Tian-Kunze et al., 2014) and the CryoSat-2 sea ice 67 
thickness (Ricker et al., 2014). However, very limited studies examined the potential influence of assimilating 68 
SMOS and/or CryoSat-2 ice thickness on the seasonal sea ice prediction to date (e.g., Kauker et al., 2015; 69 
Chen et al., 2017; Blockley et al., 2018).  70 
 71 
Based on ensemble based Kalman filter and Massachusetts Institute of Technology general circulation model 72 
(MITgcm) ice-ocean coupled model, an advanced sea ice data assimilation and prediction system has been 73 
developed, and skillful sea ice predictions in the synoptic scale were obtained by assimilating Special Sensor 74 
Microwave Imager Sounder (SSMIS) sea ice concentration and SMOS/CryoSat-2 ice thickness (e.g., Yang et 75 
al., 2014; Yang et al., 2015a; Yang et al., 2015b; Yang et al., 2016a; Yang et al., 2016b; Mu et al., 2018a; Mu 76 
et al., 2018b). However, it is not clear whether this system can be extended to the operational seasonal 77 
prediction.  78 
 79 
Towards a skillful operational Arctic sea ice seasonal outlook, in this study, we construct an ensemble based 80 
sea ice assimilation and prediction system for summer Arctic sea ice prediction. To better capture the large 81 
uncertainties in late summer, we have conducted a set of ensemble predictions of Arctic sea ice in summer 82 
2016 using a coupled ice-ocean model. The summer of 2016 is chosen because that year had a record low 83 
maximum extent in March, a record low monthly extent in June, and the second lowest monthly extent in 84 
September (4.14 million square kilometers; http://nsidc.org/arcticseaicenews/2016/09/) since the satellite era.  85 
The 4-month sea ice concentration and thickness predictions which started from May 25 of 2016 are evaluated 86 
with satellite, reanalysis and in-situ observations. A detailed description of the prediction system is presented 87 
in Section 2, followed by experiment design in Section 3. The prediction evaluation and results are shown in 88 
Section 4. The sensitivity of the prediction system is shown in Section 5, and finally the discussion and 89 
conclusions are provided in Section 6. 90 
 91 
2. Ensemble Based Sea Ice Seasonal Prediction System  92 
The ensemble based Sea Ice Seasonal Prediction System (SISPS) uses the MITgcm sea ice-ocean model 93 
(Marshall et al., 1997, Losch et al., 2010). This model includes state-of-the-art sea ice dynamics based on 94 
Zhang and Hibler (1997) and simple zero-layer thermodynamics (Losch et al., 2010). An Arctic regional 95 
configuration with a horizontal resolution of about 18 km (Losch et al., 2010; Nguyen et al., 2011) is applied. 96 
The vertical resolution is higher in the upper ocean, with 28 vertical levels in the top 1000 m and additional 22 97 
layers below 1000 m. Bathymetry is derived from the US National Geophysical Data Center (NGDC) 2 min 98 
global relief dataset (ETOPO2: Smith and Sandwell, 1997). The monthly mean river runoff is based on the 99 
Arctic Runoff Data Base (ARDB). Climatological oceanic fields from the Estimating the Circulation and 100 
Climate of the Ocean, Phase II (ECCO2) are prescribed for the open boundary conditions. 101 
 102 
To provide the “best possible” initial ice-ocean conditions for SISPS prediction, a retrospective simulation 103 
(CMST; Mu et al., 2018b) that assimilates satellite sea ice concentration and ice thickness was carried out. The 104 
CMST simulation is available during the SMOS and CryoSat-2 period from October 2010, and has been 105 



evaluated to be a good estimate on both winter and summer Arctic sea ice thickness (Mu et al., 2018b). As in 106 
Yang et al. (2015a, 2016) and Mu et al.(2018a), this simulation was also driven by the United Kingdom Met 107 
Office (UKMO) ensemble atmospheric forcing with 23 perturbed members from 1 January 2010 to 15 July 108 
2014, and 11 perturbed members after 6 November 2014 while assimilating near-real-time SSMIS sea ice 109 
concentration, SMOS and CryoSat-2 sea ice thickness data. The SSMIS sea ice concentration is available all 110 
year round, but the SMOS/CryoSat-2 ice thickness is only available for the cold season from October to the 111 
next April. It should be noted that there is no near-real-time SMOS and CryoSat-2 ice thickness data available 112 
on May 26, 2016, the starting date of this seasonal prediction. However, the sea ice thickness assimilated in the 113 
cold season can provide a good initial state for the melt season when thickness data are not available, and the 114 
summer ice thickness can be corrected via the positive cross-correlations between ice concentration and 115 
thickness (Yang et al., 2015a; Mu et al., 2018b).  116 
 117 
The atmospheric forcing fields for the seasonal outlook are obtained from the CFSv2. The daily CFSv2 118 
prediction ranges from hours to months (Saha et al., 2014). The forecast runs go out to 9 months every day, 119 
and these data are used for seasonal prediction in this study. The CFSv2 provide 6-hourly atmospheric 120 
forecasting fields in real time. These fields are ideal for forcing ice-ocean models on daily to seasonal time 121 
scales. To match our ensemble data assimilation configuration with the CMST simulation (11 members in 122 
2016), here we use 11 CFSv2 forecast ensemble members, which include 1 forecast on the prediction day (25 123 
May 2016) and 10 forecasts from the previous days (4 forecasts from 24 May, 4 forecasts from 23 May, 2 124 
forecasts from 22 May of 2016). A 48h-lagged forecast is one with valid time 48h in advance of the beginning 125 
of the seasonal forecast period, so 0h-lagged in Table 1 indicates the forecast that starts on 00:00 May 25 2016. 126 
All these predictions range from 00:00 25 May to 00:00 1 October of 2016. After the initialization, 11 127 
ensemble sea ice-ocean forecasts are conducted using atmospheric forecasts from 11 CFSv2 ensemble runs, 128 
e.g., each of these 11 individual ensemble members is associated with a unique set of forcing fields and sea 129 
ice-ocean initial states from 25 May 2016 to 30 September 2016. During the seasonal prediction, SISPS uses 130 
these initialization fields from the CMST simulation, and runs forward without assimilating any satellite ice 131 
concentration and thickness data. 132 
 133 
3. Validation and Sensitivity Experiment Design 134 
 135 
As a reference, the operational seasonal CFSv2 sea ice prediction started from 00:00 25 May in 2016 is also 136 
evaluated and compared with our results. The sea ice model used in CFSv2 is based on the Geophysical Fluid 137 
Dynamics Laboratory (GFDL) Sea Ice Simulator. Different from SISPS, it has three layers for 138 
thermodynamics, and uses the elastic–viscous–plastic technique (EVP; Hunke and Dukowicz, 1997) for sea ice 139 
dynamics. The initial condition for sea ice in the CFSv2 hindcast is from the NCEP Climate Forecast System 140 
Reanalysis (CFSR) that assimilates the near-real-time SSMIS sea ice concentration from the National Snow 141 
and Ice Data Center (NSIDC; Cavalieri et al., 1996; http://nsidc.org/data/nsidc-0081) with a simple nudging 142 
scheme. Note that although CFSR has a modeled ice thickness, there is no sea ice thickness assimilation.  For 143 
details, the readers are referred to Saha et al. (2010). 144 
  145 
The sea ice concentration from NSIDC, the PIOMAS ice thickness reanalysis, the CMST ice thickness and the 146 
in-situ ice thickness from the Beaufort Gyre Exploration Project (BGEP; http://www.whoi.edu/beaufortgyre) 147 
are used for evaluation. The PIOMAS system consists of the Parallel Ocean Program (POP) and a 12-category 148 
thickness and enthalpy distribution sea ice model on a generalized curvilinear coordinate. This system is 149 
forced by NCEP/NCAR reanalysis. Daily sea ice concentration from NSIDC and sea surface temperature from 150 
the NCEP/NCAR reanalysis are assimilated with nudging and optimal interpolation (Zhang and Rothrock, 151 
2003; Schweiger et al., 2011).  The BGEP deploys upward looking sonar (ULS) moorings at three locations 152 
BGEP A, BGEP B and BGEP D every year since 2003, and the ULS can measure the ice draft with an error of 153 
about 0.1m (Melling et al., 1995). Following Nguyen et al. (2011), drafts are converted to thicknesses by 154 
simply multiplying with a factor of 1.1. The locations of ULS sites were listed in Figure 1 of Yang et al. (2015).  155 
 156 
To study the sensitivity of the SISPS prediction to different sea ice initializations and atmospheric forcing, four 157 
more experiments are conducted in addition to the control run (SISPS as described in Section 2) as shown in 158 



Table 1. The deterministic prediction experiment DP-CMST is driven by 0h-lagged CFSv2 forcing, which is 159 
right on the prediction start date and is expected to be the most realistic because of the better initial state after 160 
initialization in the CFSv2. The sea ice states in DP-CMST are initialized by the CMST ensemble mean. The 161 
experiment ENS-PIOMAS is configured as SISPS, but uses PIOMAS thickness to initialize the model 162 
thickness. The experiment DP-PIOMAS, however, is the deterministic prediction for ENS-PIOMAS. Sea ice 163 
thickness from the CFSv2 is also used to initialize the model thickness in an experiment named DP-CFS. The 164 
differences between DP-CFS and CFSv2 are that DP-CFS uses a different model with different initial sea ice 165 
concentration. 166 
 167 
Table 1 Summary of the experiment configuration. *  168 

 Sea ice initial condition Atmospheric forcing 
Data assimilation over 
the prediction period 

SISPS CMST SIC / CMST SIT 
Time-lagged CFSv2 ensemble 

forcing 
No 

DP-CMST CMST SIC / CMST SIT 0h-lagged CFSv2 forcing No 

ENS-PIOMAS CMST SIC / PIOMAS SIT 
Time-lagged CFSv2 ensemble 

forcing 
No 

DP-PIOMAS CMST SIC / PIOMAS SIT 0h-lagged CFSv2 forcing No 
DP-CFS CMST SIC / CFSv2 SIT 0h-lagged CFSv2 forcing No 

*SIC = Sea ice concentration, SIT = Sea ice thickness 169 
 170 
 171 
4. SISPS Prediction Results 172 
4.1 Sea ice extent and concentration 173 
The sea ice extent is defined as the total area of the grids with ice concentration larger than 15%. The 174 
prediction is good for the date of the summer minimum around September 10 (Figure 1) from CFSv2 and 175 
SISPS. The SISPS summer extent minimum is 4.26 million km2, which is slightly larger than the NSIDC 176 
observation (4.14 million km2). However, a large overestimation of 3.83 million km2 (a relative overestimation 177 
of 92.3%) is observed in the CFSv2 prediction. It should also be noted that SISPS significantly underestimates 178 
the ice extent in July. The underestimation is not clear at this moment. It may be related to the stormy 179 
conditions in July and August of 2016 (http://nsidc.org/arcticseaicenews/2016/09/), which, however, is beyond 180 
the capability for CFSv2 to predict realistic synoptic weather 2 months ahead. 181 

 182 



Figure 1 Evolution of Arctic sea ice extent from 25 May to 30 September in 2016. The NSIDC observations 183 
and CFSv2 forecasts are shown as black and blue solid lines, respectively. The ensemble mean and the spread 184 
of SISPS forecasts are shown as red dashed lines and red shades. Date format is dd/mm. 185 
 186 
Figure 2 shows the sea ice extent prediction in six different Arctic regions, as defined on Figure 1 in Cavalieri 187 
and Parkinson (2012). The CFSv2 overestimates sea ice extent in most of the Arctic regions, in particular there 188 
is an overestimation of 3.5 million km2, 0.6 million km2 and 0.3 million km2 in the Central Arctic Ocean, the 189 
Kara and Barents Seas and the Canadian Archipelago on September 10 of 2016 (the Arctic summer minimum), 190 
respectively. Thesecan also be seen in Figure 3, in which it shows the sea ice concentration averaged over the 191 
period from 30 August to 19 September, 2016. In contrast, the ensemble mean of SISPS agrees well with the 192 
NSIDC observations in most of the regions, particularly in the central Arctic Ocean (Figure 2) and in 193 
September. However, the predicted ice extent in Kara and Barents Seas are highly overestimated in June and 194 
July, and the maximum overestimation reaches 0.5 million km2. Sea ice in Kara and Barents Seas was well 195 
below average in winter and spring of 2016, and the surface conditions were unusually warm, therefore sea ice 196 
extent in June and July of 2016 were significantly lower than the normal level 197 
(http://nsidc.org/arcticseaicenews/2016/07/). In this situation, SISPS fails to capture the abnormal sea ice 198 
changes due to imperfect atmospheric conditions from the prediction.   199 
 200 

 201 
Figure 2 Evolutions of sea ice extent in different Arctic regions from 25 May to 30 September in 2016. The 202 
NSIDC observations, CFSv2 and ensemble mean of SISPS forecasts are shown as black, blue and red solid 203 
lines, respectively.  204 
 205 



 206 
Figure 3 Sea ice concentration averaged over the period from 30 August to 19 September, 2016. Note that 207 
results from SISPS, CMST and ENS-PIOMAS are ensemble means. Both CMST and PIOMAS assimilate sea 208 
ice concentration over this period and, moreover, sea surface temperature is also assimilated in PIOMAS. DP 209 
indicates experiments with single deterministic forcing, and ENS indicates the experiment with ensemble 210 
CFSv2 forcing. 211 
 212 
The temporal evolution of root-mean-square error (RMSE) differences between the predictions with the 213 
NSIDC sea ice concentration observations are shown in Figure 4. Following Lisæter et al. (2003) and Yang et 214 
al. (2015), the RMSE is only calculated at grid points where either the forecasts or the observations have ice 215 
concentration larger than 0.05. The RMSE of the ensemble mean SISPS prediction (the blue solid line) is 0.34 216 
in the beginning of the prediction, and is basically stable within a range between 0.28 and 0.34 over the 4-217 
month prediction period. The CFSv2 has even lower RMSE values than the SISPS ensemble mean in the first 218 
25 days (before June 19; the blue dashed line), which shows some prediction skill on the sea ice concentration 219 
during this period. This is expected because the CFSv2 system operationally nudges the NSIDC sea ice 220 
observations which are also used in this validation. However, in contrast to SISPS, the RMSE of CFSv2 221 
prediction keeps increasing and reaches a maximum of 0.57 on 8 September of 2016, which also demonstrates 222 
a large error in the seasonal summer sea ice prediction in the operational CFSv2 system.   223 



 224 
Figure 4 Evolution of RMSE differences (blue) and the integrated ice-edge error (IIEE; red) with respect to 225 
the NSIDC ice concentration data from 25 May to 30 September in 2016, the SISPS ensemble mean and the 226 
CFSv2 predicted sea ice concentration are shown as solid and dashed lines, respectively.  227 
 228 
Here the integrated ice-edge error (IIEE; Goessling et al., 2016) is used as an additional metric. It shows the 229 
total area of grid cells, where there is a mismatch between the model and satellite data in the presence of sea 230 
ice. The IIEE of SISPS (the red solid line in Figure 4) is always significantly lower than that of CFSv2 (the red 231 
dashed line) during the 4-month prediction period. The mean IIEE during this period for SISPS is 2.05 million 232 
km2, while that for CFSv2 is 4.19 million km2. The difference is substantial with about 2.14 million km2 that is 233 
more than half of the CFSv2 IIEE values. 234 
 235 
The predicted sea ice concentration varies considerably among the 11 ensemble members, in particular in 236 
September (Figure 5). The ensemble standard deviation of sea ice concentration is very small in the beginning 237 
of the prediction, but it keeps increasing with the prediction time, and finally reaches a maximum in late 238 
September. The predicted deviation (prediction uncertainties) is relatively small in the central Arctic where the 239 
sea ice concentration is close to 100%, and large in the marginal ice zones where sea ice changes dramatically 240 
(Figure 5). This spatial distribution and ensemble spread fit well to the standard deviation of sea ice 241 
concentration calculated based on SSMIS observations over the period from 2006 to 2016 (also 11 members, 242 
figure not shown). It demonstrates that the ensemble spread of SSMIS is able to mimic the interannual 243 
variability in reality.  244 



 245 
Figure 5 The ensemble standard deviation (SD) of sea ice concentration for SISPS on 1 June, 1 July, 1 August, 246 
1 September, 10 September, and 30 September, 2016.  247 
 248 
 249 
4.2 Sea ice thickness 250 
SISPS sea ice thickness prediction averaged over the period from 30 August to 19 September 2016 is shown in 251 
Figure 6. The SISPS prediction agrees well with CMST and PIOMAS thickness (Figure 6). Sea ice thickness 252 
in the East Siberian and Laptev Seas is underestimated by SISPS, while appears promising over thick ice (> 253 
1.0 m) area. SISPS also predicts more ice along east coast of Greenland. Apparently, CFSv2 highly 254 
overestimates sea ice thickness in the central Beaufort Sea and the Arctic marginal seas (Figure 6). The spatial 255 
distribution of CFSv2 thickness seems not reasonable comparing to the well-recognized PIOMAS reanalysis. 256 
Similar to the ice concentration prediction, the SISPS shows better prediction skill over the CFSv2 prediction.  257 
 258 



259 
Figure 6 Sea ice thicknesses averaged over the period from 30 August to 19 September, 2016. Note that 260 
results from SISPS, CMST and ENS-PIOMAS are ensemble means. Both CMST and PIOMAS assimilate sea 261 
ice concentration over this period and, moreover, sea surface temperature is also assimilated in PIOMAS. DP 262 
indicates experiments with single deterministic forcing, and ENS indicates the experiment with ensemble 263 
CFSv2 forcing. 264 
 265 
The time series of sea ice thickness predictions are compared to in-situ ULS-observations BGEP_2015A 266 
(Figure 7a), BGEP_2015B (Figure 7b) and BGEP_2015D (Figure 7c). At the site BGEP_2015A, the ice 267 
thickness RMSE of CFSv2, SISPS, CMST and PIOMAS with respect to the observations are 2.49 m, 0.40 m, 268 
0.39 m and 0.39 m, respectively; at the site BGEP_2015B, they are 3.17 m, 0.31m, 0.33 m and 0.27 m, 269 
respectively; at the site BGEP_2015D, they are 2.34 m, 0.53 m, 0.50 m and 0.51 m, respectively. It is plausible 270 
that the 4-month sea ice thickness prediction of SISPS agrees well with the in-situ observations, and is 271 



comparable with the PIOMAS and CMST ice thickness estimates. CFSv2 overestimates sea ice thickness in 272 
the Beaufort Sea by as much as up to 2 m as also shown in Figure 6. 273 
 274 

 275 
Figure 7 Evolution of mean sea ice thickness (m) at (a) BGEP_2015A, (b) BGEP_2015B and (c) 276 
BGEP_2015D Beaufort Sea from 25 May to 30 September 2016. The BGEP, PIOMAS, CMST, and CFSv2 277 
thickness are shown as black, green, blue, magenta and red solid lines, respectively. The ensemble mean and 278 
the spread of SISPS forecasts are shown as red dashed lines and red shades. 279 
 280 
 281 
Similar to the ice concentration prediction, the ensemble spread of the predicted sea ice thickness also varies 282 
considerably among the 11 ensemble members with time evolution (Figure 8), but shows differences on spatial 283 
distribution. In early summer (e.g., 1 July) the ensemble deviation of sea ice thickness is small (< 0.1m) in the 284 
central Arctic Ocean and large (> 0.4 m) in the marginal sea ice zone (Figure 8), which is consistent with the 285 
sea ice concentration (Figure 5), Over the melting period, the deviation becomes larger (> 0.4 m) in the central 286 
Arctic.  287 

(a) 

(b) 

(c) 



 288 
Figure 8 The ensemble standard deviation (SD) of sea ice thickness for SISPS on 1 June, 1 July, 1 August, 1 289 
September, 10 September, and 30 September in 2016.  290 
 291 
 292 
5. Sensitivity of SISPS in seasonal sea ice prediction 293 
The uncertainty of sea ice prediction using an ice-ocean coupled model may be attributed to shortcomings in 294 
model physics and improper atmospheric forcing. The initial condition plays an important role on long-term 295 
prediction in the presence of such uncertainties. SISPS sea ice prediction benefits from both the initial states 296 
from the CMST ensemble and the time-lagged ensemble forcing from the CFSv2.  297 
 298 
As shown in Figures 3 and 6, with reasonable sea ice thickness initialization, SISPS, DP-CMST, ENS-299 
PIOMAS and DP-PIOMAS all predicted better September sea ice concentration and thickness than the CFSv2 300 
and DP-CFS did. However, even with the same sea ice concentration initialization as DP-CMST and DP-301 
PIOMAS, sea ice concentration from DP-CFS is far away from reality, so is the sea ice thickness. This 302 
indicates that a realistic sea ice thickness initialization is crucial for seasonal prediction, as also reported by 303 
other studies (Blockley et al., 2018; Collow et al., 2015; Xie et al., 2018). It is worth noting that although 304 
CMST and PIOMAS sea ice thickness can be both considered as good estimates in the Arctic (CMST versus 305 
PIOMAS in Figure 6), the initialization of using CMST or PIOMAS thickness can still lead great differences 306 
in predicting September sea ice thickness (Figures 3 and 6; DP-CMST versus DP-PIOMAS). Sea ice thickness 307 
and concentration are underestimated north of Laptev Sea. In DP-CMST sea ice concentration and thickness 308 
are also underestimated north of the East Siberian Sea, but they are overestimated in DP-PIOMAS there. 309 
 310 
The initial sea ice extent also plays a substantial role on September sea ice extent prediction, but not on ice 311 
concentration and thickness prediction in our study. In DP-CFS the initial sea ice concentration from CMST is 312 
used, which is closer to the NSIDC observation as shown in Figure 1, therefore the initial sea ice extent for 313 
DP-CFS is considered reasonable. The September sea ice extent prediction from DP-CFS outperforms CFSv2 314 
(Figures 3 and 6) over the Arctic marginal seas. Chevallier et al. (2013) also confirmed that the anomaly of 315 
spring sea ice cover preconditions the September SIE anomaly. However, a better sea ice concentration initial 316 



condition alone does not give rise to a promising September sea ice concentration (DP-CFS in Figure 3) and 317 
sea ice thickness (DP-CFS in Figure 6). 318 
 319 
The ensemble forcing, another important influencing factor for sea ice prediction, has improved the prediction 320 
for both ice concentration and ice thickness (SISPS and ENS-PIOMAS in Figures 3 and 6). The ensemble 321 
forcing not only reduces uncertainties in the atmospheric forcing but also corrects ice-ocean model 322 
uncertainties due to model deficiencies such as different sea ice parameters in different models (e.g., 323 
Massonnet et al., 2014). As shown in Figure 9, the 0h-lagged CFSv2 atmospheric forecast (red line) does not 324 
always have the lowest root-mean-square (RMS) differences with respect to ERA-Interim atmospheric 325 
reanalysis according to the calculation of downward longwave radiation, downward shortwave radiation and 2 326 
m temperature. The 66h-lagged forecast even performs better, such as the 2 m temperature forecast in June and 327 
July (Figure 9c) and the downward shortwave radiation forecast in June (Figure 9b). The ensemble forcing 328 
provides atmospheric trajectories with also wide probability for the prediction. In SISPS thicker and more ice 329 
is predicted over the area near North Pole towards the Eurasian continent, but it is underestimated in DP-330 
CMST over the same area. ENS-PIOMAS also reduces the biases of DP-PIOMAS over this area and north of 331 
East Siberian Sea. 332 
 333 

 334 
 335 

Figure 9 RMS differences of monthly mean downward longwave radiation (a), downward shortwave radiation 336 
(b), and 2 m temperature (c) in the ensemble forcing with respect to ERA-Interim atmospheric reanalysis. Note 337 
that the 0h-lagged forecast was initialized in CFSv2 right on the prediction start (00:00:00 25 May 2016), 338 
while the 66h-lagged forecast was initialized 66 hours before the prediction start. 339 
 340 
6. Discussion and conclusions 341 
In an effort to operationally predict the summer sea ice on seasonal time scale, an ensemble based Seasonal 342 
Sea Ice Prediction System (SISPS) is configured and a 4-month hindcast experiment is carried out to predict 343 
the summer sea ice in 2016. The initialization for the experiment uses the restart files from the CMST system 344 
that assimilates near-real-time satellite sea ice observations, specifically the sea ice concentration from SSMI 345 
and/or SSM/IS channels and the sea ice thickness from SMOS and CryoSat-2. Zhang et al. (2008) 346 
implemented a 1-year sea ice prediction system using unchanging initial sea ice-ocean fields but with an 347 
ensemble of different atmospheric forcing. In this study, we extend the outlook with an ensemble of both 348 
different sea ice-ocean initialized fields and different atmospheric forcing fields. The relatively large ensemble 349 
standard deviations in September in SISPS are comparable to the natural variability calculated from 2006 to 350 
2016. Evaluations with observations demonstrate that prediction results from SISPS are very promising. The 351 
results from the additional sensitivity experiments indicate that the proper sea ice initial conditions and 352 
ensemble atmospheric forcing in SISPS contribute to a better prediction. 353 
 354 
As illustrated in Zhang et al. (2008), one difficulty in the ensemble predictions is the lack of operational 355 
prediction forcing since the ice-ocean model does not include an atmospheric component. Zhang et al. (2008) 356 
used the NCEP/NCAR reanalysis forcing fields from 2000 to 2007 for various individual ensemble predictions 357 
to drive PIOMAS sea ice-ocean model, while Zhang and Schweiger used the daily four atmospheric seasonal 358 
forecasts from the CFSv2 in their seasonal sea ice outlook for 2017. As a further extension, in this study we 359 
increase the ensemble members to 11 to match our ensemble initializations, and to better reflect the prediction 360 

(a) (b) (c) 



uncertainties, by using a time-lagged ensemble of 11 operational atmospheric forcing which from the CFSv2 361 
system.   362 
 363 
The second difficulty described in Zhang et al. (2008) is the lack of reasonable initial ensemble sea ice-ocean 364 
state. Our initial sea ice-ocean fields are from the CMST simulation, in which the near-real-time SSMIS sea ice 365 
concentration, SMOS and CryoSat-2 ice thickness are assimilated, and had been proven to be a good estimate 366 
on the year-round Arctic sea ice thickness (Mu et al., 2018b). The SISPS predicts a much better sea ice 367 
distribution than the CFSv2 does, although the operational atmospheric forcing fields from the CFSv2 are used 368 
to drive SISPS. This reflects the importance of assimilating satellite based sea ice concentration and thickness 369 
observations with an advanced data assimilation method, though there is no available sea ice thickness 370 
observations on the prediction starting date (May 25 of 2016). The multivariate data assimilation system helps 371 
correct the sea ice thickness by providing a good initial state for the upcoming melt season and updating the 372 
summer thickness with assimilation of sea ice concentration only, because there is a positive correlation 373 
between sea ice concentration and thickness in summer, which can be explained by sea ice thermodynamics 374 
that the thick ice can reduce the horizontal melting (Yang et al., 2015; Mu et al., 2018b).  However, in CFSv2 375 
it only assimilates sea ice concentration with a simple nudging scheme, ice thickness cannot be corrected 376 
during the assimilation, thus the overestimation of the Arctic sea ice thickness in CFSv2 remains unchanged. It 377 
is expected that the sea ice prediction can be largely corrected by reducing the initial sea ice thickness error if 378 
the CryoSat-2 and SMOS ice thickness are assimilated in CFSv2 (Chen et al., 2017). The systematic errors 379 
should be considered and treated carefully when using the CFSv2 for seasonal sea ice predictions.  380 
  381 
Although this is only a case study towards developing an operational sea ice seasonal prediction system to 382 
predict summer sea ice conditions, this SISPS system has shown great potential for seasonal sea ice prediction. 383 
Nevertheless, more applications with this system for seasonal sea ice prediction can be applied in the future, 384 
the robustness of the system can be further tested.   385 
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